Hilfe bei Analog Watchdog STM32F303RE

Schnelle objektorientierte, kompilierende Programmiersprache.
Antworten
cointhebit
Beiträge: 1
Registriert: Mi Jul 22, 2020 12:14 pm

Hilfe bei Analog Watchdog STM32F303RE

Beitrag von cointhebit » Mi Jul 22, 2020 12:32 pm

Guten Tag zusammen,
ich bin neu hier im Forum und habe direkt mal eine Frage.
Ich bin grade dran mit einem STM32F303RE Mikrocontroller ein Programm zu schreiben, welches kontinuierlich ein Analogsignal misst. Bei Abweichen des Signals von einem bestimmten Bereich soll eine Aufzeichnung der ADC1 Wandler Daten starten.

Aus verschiedenen englisch sprachigen Foren und dem User Manual habe ich mir nun zusammen gesucht was ich dafür ungefähr benötige. Ich will mit einem AWD (Analog Watchdog) das Signal überwachen und bei verlassen eines bestimmten Bereichs eine ISR (Interrupt Service Routine) aufrufen und daraus eine Messung über DMA starten. Hierüber werden die Werte in ein Array geschrieben.

Das Programm findet keine Fehler doch leider geht gar nichts momentan (weder die Variable analogwert, noch der Buffer adc_buf füllen sich).

Die main.c sieht folgendermaßen aus:

Code: Alles auswählen

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "string.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define ADC_BUF_LEN 200
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;

TIM_HandleTypeDef htim3;

UART_HandleTypeDef huart2;

/* USER CODE BEGIN PV */
volatile uint16_t analogwert;
volatile uint16_t adc_buf[ADC_BUF_LEN];
volatile uint8_t dmaFlag = RESET;
volatile uint8_t ready2process = RESET;
volatile long dma_retrigger_counter = 0;

long awd_counter = 0;



/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);

static void MX_TIM3_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int _write(int file, char *ptr, int len)
{
  /* Implement your write code here, this is used by puts and printf for example */
  int i=0;
  for(i=0 ; i<len ; i++)
    ITM_SendChar((*ptr++));
  return len;
}

void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc)	{
	awd_counter++;  //count peaks
	//check which awd event occured
	if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD1) != RESET)
	     {
	          //check if dma is not running and retrigger delay has expired
	          if ((dmaFlag == RESET) && (dma_retrigger_counter <= 0))
	          {
	               //stop regular conversions
	               HAL_ADC_Stop_IT(hadc);
	               //start dma conversions
	               HAL_ADC_Start_DMA(hadc,(uint32_t*) &adc_buf, 5000);

	               //set dma flag
	               dmaFlag = SET;

	               //temporary disable watchdog interrupt while dma is running
	               __HAL_ADC_DISABLE_IT(hadc, ADC_FLAG_AWD1);
	                    //clear interrupt flag
	               __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);

	               //turn on LED with DMA is running
	               HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_SET);
	          }
	     }

	printf("Hei bro bin außerhalb, schreibe jetzt Daten in Buffer");
}

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)	{
	//check if dma is running
	if(dmaFlag == SET)
	     {
	          //stop dma conversions
	          HAL_ADC_Stop_DMA(&hadc1);
	          //start regular conversions so watchdog will be active after AWD1 int is reenabled
	          HAL_ADC_Start_IT(&hadc1);

	          //reset dma flag
	          dmaFlag = RESET;
	          //set counter so peak cant retrigger for finite period
	          dma_retrigger_counter = 500; // time main loop delay (10ms) * 500 = 5 sec

	          //set flag that dma buffer is ready to process
	          ready2process = SET;
	          //turn off LED when DMA is finished
	          HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);
	     }

}

void ProcessData()
{
     for(int i=0; i<ADC_BUF_LEN; i++)
     {
          printf("%d", adc_buf[i]);
          adc_buf[i] = 0;
     }

     //buffer is ready to be reused
     ready2process = RESET;

     //return;
}

void delay(float d){
	HAL_Delay(d);
}

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();
  MX_TIM3_Init();
  /* USER CODE BEGIN 2 */
//HAL_ADC_Start_DMA(&hadc1, (uint32_t*)&adc_buf, ADC_BUF_LEN);
  //Start 0.1ms conversion trigger timer
  HAL_TIM_Base_Start(&htim3);
  //Start regular continuous conversion with watchdog interrupt enabled
  HAL_ADC_Start_IT(&hadc1);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	  delay(1);
	  //check if peak is ready to process
	  if (ready2process == SET)
	  	  {
		  	  
	       }
	  else
	  	  {

		  //check if retrigger delay has expired
		  if (dma_retrigger_counter-- == 0)
	                 {
	                      //clear old interrupt flag
	                      __HAL_ADC_CLEAR_FLAG(&hadc1, ADC_FLAG_AWD1);
	                      //re-enable watchdog interrupt after delay running
	                      __HAL_ADC_ENABLE_IT(&hadc1, ADC_FLAG_AWD1);
	                 }
	  	  }

	            //do something other periodic stuff (get last conversion value)
	  analogwert = HAL_ADC_GetValue(&hadc1);

	

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL2;
  RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV1;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2|RCC_PERIPHCLK_ADC12
                              |RCC_PERIPHCLK_TIM34;
  PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;
  PeriphClkInit.Adc12ClockSelection = RCC_ADC12PLLCLK_DIV1;
  PeriphClkInit.Tim34ClockSelection = RCC_TIM34CLK_HCLK;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)
{

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_MultiModeTypeDef multimode = {0};
  ADC_AnalogWDGConfTypeDef AnalogWDGConfig = {0};
  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */
  /** Common config 
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc1.Init.ContinuousConvMode = DISABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T3_TRGO;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure the ADC multi-mode 
  */
  multimode.Mode = ADC_MODE_INDEPENDENT;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Analog WatchDog 1 
  */
  AnalogWDGConfig.WatchdogNumber = ADC_ANALOGWATCHDOG_1;
  AnalogWDGConfig.WatchdogMode = ADC_ANALOGWATCHDOG_SINGLE_REG;
  AnalogWDGConfig.HighThreshold = 2500;
  AnalogWDGConfig.LowThreshold = 1400;
  AnalogWDGConfig.Channel = ADC_CHANNEL_1;
  AnalogWDGConfig.ITMode = ENABLE;
  if (HAL_ADC_AnalogWDGConfig(&hadc1, &AnalogWDGConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel 
  */
  sConfig.Channel = ADC_CHANNEL_1;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}

/**
  * @brief TIM3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM3_Init(void)
{

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_SlaveConfigTypeDef sSlaveConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 0;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 0;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_ETRMODE2;
  sClockSourceConfig.ClockPolarity = TIM_CLOCKPOLARITY_NONINVERTED;
  sClockSourceConfig.ClockPrescaler = TIM_CLOCKPRESCALER_DIV1;
  sClockSourceConfig.ClockFilter = 0;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sSlaveConfig.SlaveMode = TIM_SLAVEMODE_DISABLE;
  sSlaveConfig.InputTrigger = TIM_TS_ITR0;
  if (HAL_TIM_SlaveConfigSynchro(&htim3, &sSlaveConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */

}

/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 38400;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/** 
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void) 
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, LD2_Pin|GPIO_PIN_10, GPIO_PIN_RESET);

  /*Configure GPIO pins : PC13 PC14 PC15 PC0 
                           PC1 PC2 PC3 PC4 
                           PC5 PC6 PC7 PC8 
                           PC9 PC10 PC11 PC12 */
  GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_0 
                          |GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4 
                          |GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8 
                          |GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12;
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /*Configure GPIO pins : PF0 PF1 */
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);

  /*Configure GPIO pins : PA1 PA4 PA6 PA7 
                           PA8 PA9 PA11 PA12 
                           PA15 */
  GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_6|GPIO_PIN_7 
                          |GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_11|GPIO_PIN_12 
                          |GPIO_PIN_15;
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pins : LD2_Pin PA10 */
  GPIO_InitStruct.Pin = LD2_Pin|GPIO_PIN_10;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pins : PB0 PB1 PB2 PB10 
                           PB11 PB12 PB13 PB14 
                           PB15 PB4 PB5 PB6 
                           PB7 PB8 PB9 */
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_10 
                          |GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14 
                          |GPIO_PIN_15|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6 
                          |GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9;
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */


/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{ 
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
Kann sich jemand die Mühe machen kurz über meinen Code zu schauen und mir evtl zu sagen, was nicht stimmt?

Ich bedanke mich im Vorraus schonmal!

Mfg cointhebit

Antworten